
X.S. Hu 5-1

CSE 30321
Computer Architecture I

Lecture 17 - Multi Cycle Machines

Michael Niemier

Department of Computer Science and Engineering

X.S. Hu 5-2

t i

t i
[]

I

I

I]

t

t

t

i

t

l

r l

t

t

I

Single cycle Control Implementation

x

X.S. Hu 5-3

How to Determine Cycle Length?

! Calculate cycle time assuming negligible delays except:

" memory (2ns), ALU and adders (2ns), register file access
(1ns)

" R-type: max {mem + RF + ALU + RF, Add}

 = 6ns

" LW: max{mem + RF + ALU + mem + RF, Add} = 8ns

" SW: max{mem + RF + ALU + mem, Add} = 7ns

" BEQ: max{mem + RF + ALU, max{Add, mem + Add}}

 = 5ns

X.S. Hu 5-4

Some Observations

! Datapath:

" How many times is each component used during an
instruction execution? Once

" Components can be combined by overlapping
different instruction types
#Register file by all instruction types

#How about ALU?

#How about sign-extension unit?

! Control:

" For each type of instruction, identify control signals
for each datapath component involved

" Control signals are generated from the instruction
opcode (instr[31:26])

X.S. Hu 5-5

Single-Cycle Implementation

! Single-cycle, fixed-length clock:

" CPI = 1

" Clock cycle = propagation delay of the longest datapath
operations among all instruction types

" Easy to implement

! Single-cycle, variable-length clock:

" CPI = 1

" Clock cycle = ! (%(type-i instructions) * propagation delay

of the type-i instruction datapath operations)

" better than the previous one but impractical to implement

! Disadvantages:

" What if we have floating-point operations?

" How about component usage?

X.S. Hu 5-6

Multiple Cycle Alternative

! Break an instruction into smaller steps

! Execute each step in one cycle

! Execution sequence:

" Balance the amount of work to be done, why?

" Restrict each cycle to use only one major functional
unit, why?

" At the end of a cycle

store values for use in later cycles, why?

introduce additional “internal” registers

! The advantages:

" Cycle time is much shorter

" Different instructions take different number of cycles to
complete

" Allows a functional unit to be used more than once per
instruction

X.S. Hu 5-7

Multiple-Cycle Implementation

! Datapath

" Component sharing: ALU, Instruction/Data
memory

#ALU used to compute address and to increment PC

#Memory used for instruction and data

" Additional elements: MUX’s, Instr Register, Target
Register

If a value needs to be alive during multiple cycles, it
should stay unchanged during the whole time.

! Control:

" Needed for each datapath element during each
clock cycle

X.S. Hu 5-8

What to be Done for Each Instruction?

! How many cycles should the above take?

! You are the architect so you decide!

! Less cylces => more to be done in one cycle

!"#$%&'()# *"$+," !"#$%&+-"./(,)

01"$2#"3.4#"&5/$6

X.S. Hu 5-9

Five Step Execution

1. Instruction Fetch (Ifetch):
" Fetch instruction at address ($PC)

" Store the instruction in register IR

" Increment PC

2. Instruction Decode and Register Read (Decode):

" Decode the instruction type and read register

" Store the register contents in registers A and B

" Compute new PC address and store it in ALUOut

3. Execution, Memory Address Computation, or Branch
Completion (Execute):
" Compute memory address (for LW and SW), or

" Perform R-type operation (for R-type instruction), or

" Update PC (for Branch and Jump)

" Store memory address or register operation result in
ALUOut

X.S. Hu 5-10

Five Step Execution (cont’d)

4. Memory Access or R-type instruction completion
(MemRead/RegWrite/MemWrite):

" Read memory at address ALUOut and store it in MDR

" Write ALUOut content into register file, or

" Write memory at address ALUOut with the value in B

5. Write-back step (WrBack):

" Write the memory content read into register file

! Number of cycles for an instruction:

" R-type: 4

" lw: 5

" sw: 4

" Branch or Jump: 3

X.S. Hu 5-11

Some Simple Questions

! How many cycles will it take to execute this code?

 lw $t2, 0($t3)
 lw $t3, 4($t3)
 beq $t2, $t3, Label #assume branch is not taken
 add $t5, $t2, $t3
 sw $t5, 8($t3)
Label: ...

 5+5+3+4+4=21

! What is being done during the 8th cycle of execution?

 Compute memory address: 4+$t3

! In what cycle does the actual addition of $t2 and $t3 takes

place? 16

X.S. Hu 5-12

Step 1: Instruction Fetch

! Use PC to fetch instruction and put it in the
Instruction Register.

! Increment the PC by 4 and put the result back in the
PC.

! How about express this in RTL?

 IR=Mem[PC], PC=PC+4

! What is the advantage of updating the PC now?

! Basic principle: do it ASAP!

X.S. Hu 5-13

! Read registers rs and rt in case we need them

! Compute the branch address in case the instruction is
a branch

! RTL:

 A = RF[IR[25:21]],

 B = RF[IR[20:16]],

 ALUOut = PC +(sign-extend(IR[15-0]))<<2

! Did we set any control lines based on the instruction
type?

Step 2: Decode and Register Read

X.S. Hu 5-14

Step 3 Execute (Instruction Dependent)

! ALU is performing one of three functions, based on
instruction type

! RTL

" Memory Reference:
ALUOut = A + sign_ext(IR[15:0]);

" R-type:
ALUOut = A op B;

" Branch:
if (A=B) then (PC = ALUOut);

X.S. Hu 5-15

! Loads and stores access memory

MDR = Mem[ALUOut];
or

Mem[ALUOut] = B;

! R-type instructions finish

RF[IR[15:11]] = ALUOut;

Step 4 RegWrite/MemRead

X.S. Hu 5-16

Step 5: Write-Back

! Which type of instruction needs this?

! RTL

 RF[IR[20:16]]= MDR;

! What about all the other instructions?

X.S. Hu 5-17

RTL Description: Put All Together (1)
Ifetch: -> Decode,

 IR = Mem[PC], PC = PC + 4;

Decode: ->Execute,

A= RF[IR[25:21]], B= RF[IR[20:16]],

ALUOut = PC + Sign_Ext(IR[15:0]) << 2);

Execute:

if (opcode=lw) or (opcode=sw) then -> MRead/RegWrite,

ALUOut = A + Sign_Ext(IR[15:0]);

if (opcode=“R-type”) then -> MRead/RegWrite,

ALUOut = A op B;

if (opcode=branch) then -> Ifetch,

if (A=B) then PC= ALUout;

if (opcode=jump) then -> Ifetch,

PC=PC[31:28]||IR[25:0]||00;

X.S. Hu 5-18

RTL Description: Put All Together (2)

MRead/RegWrite:

 if (opcode=lw) then -> WriteBack,

 MDR = Mem[ALUOut];

 if (opcode=sw) then -> Ifetch,

 Mem[ALUOut] = MDR;

 RF[IR[15:11]] = ALUOut, ->Ifetch;

WriteBack:

 Mem[ALUOut] = MDR, ->Ifetch;

X.S. Hu 5-19

Execution Sequence Summary

Step name

Action for R-type

instructions

Action for memory-reference

instructions

Action for

branches

Action for

jumps

Instruction fetch IR = Mem[PC],

PC = PC + 4

Instruction A =RF [IR[25:21]],

decode/register fetch B = RF [IR[20:16]],

ALUOut = PC + (sign-extend (IR[1:-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A =B) then PC = PC [31:28] |

computation, branch/ (IR[15:0]) PC = ALUOut (IR[25:0]<<2)

jump completion

Memory access or R-type RF [IR[15:11]] = Load: MDR = Mem[ALUOut]

completion ALUOut or

Store: Mem[ALUOut]= B

Memory read completion Load: RF[IR[20:16]] = MDR

X.S. Hu 5-20

A Multiple Cycle Datapath

Instruction

register

Memory

data

register

ALUOutRegisters

Register B

Data

Register A

Register W

PC

Memory

Address

Instruction
or data

Data

ALU

A

B

! Where do we need to insert mux’s?

! Any other functional units?

X.S. Hu 5-21

Multiple Cycle Design

! Break up the instructions into steps, each step takes a cycle

" balance the amount of work to be done

" restrict each cycle to use only one major functional unit

! At the end of a cycle

" store values for use in later cycles (easiest thing to do)

" introduce additional “internal” registers

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15–0]

Sign
extend

3216

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

Instruction
register

1 M
u
x

0

3

2

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15–11]

A

B

ALUOut

Address M
u
x

0

1

X.S. Hu 5-22

Exercise: Add a New Instruction

! Let’s try “jal”

! RTL: PC = (PC+4)[3:0] || TargetAddr[25:0],

 RF[31] = PC + 4;

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15–0]

Sign
extend

3216

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

Instruction
register

1 M
u
x

0

3

2

ALU
result

ALU

Zero

Memory
data

register

Instruction
[15–11]

A

B

ALUOut

Address
M
u
x

0

1

X.S. Hu 5-23

Control Signals

! PC: PCWrite,
PCWriteCond,
PCSource

! Memory: IorD,
MemRead,
MemWrite

! Instruction
Register:
IRWrite

! Register File:
RegWrite,
MemtoReg,
RegDst

! ALU:
ALUSrcA,
ALUSrcB,
ALUOp,

X.S. Hu 5-24

Implementing the Control

! Value of control signals is dependent upon:

" what instruction is being executed

" which step is being performed

! How to represent all the information?

" finite state diagram

" microprogramming

! Realization of a control unit is independent of the
representation used

" Control outputs: random logic, ROM, PLA

" Next-state function: same as above or an explicit
sequencer

X.S. Hu 5-25

Finite State Diagram

t

i

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWrteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

RegDst=0
RegWrite

MemtoReg=1

ALUSrcA= 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrte
PCSource = 00

Instruction fetch
Instruction decode/

register fetc h

Jump
completon

Branch
completion

Executon

R-type completon

Wrte-back step

 (Op = '
LW') or

 (Op = 'SW') (Op =
R-typ

e)

(O
p

= '
BE

Q'
)

(O
p

=
J'
)

 (

4

0
1

986

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

Memory address
computation

Memory
access

O
p = 'SW

')

(O
p

=
'L

W
')

2

Memory
access

7
53

Start

