种

CSE 30321 Computer Architecture I

Lecture 17 - Multi Cycle Machines

Michael Niemier Department of Computer Science and Engineering

Single cycle Control Implementation

X.S. Hu

How to Determine Cycle Length?

5-1

□ Calculate cycle time assuming negligible delays except:

- memory (2ns), ALU and adders (2ns), register file access (1ns)
- R-type: max {mem + RF + ALU + RF, Add} = 6ns
- LW: max{mem + RF + ALU + mem + RF, Add} = 8ns
- SW: max{mem + RF + ALU + mem, Add} = 7ns
- BEQ: max{mem + RF + ALU, max{Add, mem + Add}} = 5ns

Some Observations

Datapath:

- How many times is each component used during an instruction execution?
- Components can be combined by overlapping different instruction types
 - > Register file by all instruction types
 - ➤ How about ALU?
 - > How about sign-extension unit?

Control:

- For each type of instruction, identify control signals for each datapath component involved
- Control signals are generated from the instruction opcode (instr[31:26])

X.S. Hu

5-3

IIM

5-2

IN

Single-Cycle Implementation

- □ Single-cycle, fixed-length clock:
 - CPI = 1
 - Clock cycle = propagation delay of the longest datapath operations among all instruction types
 - Easy to implement
- □ Single-cycle, variable-length clock:
 - CPI = 1
 - Clock cycle = Σ (%(type-i instructions) * propagation delay of the type-i instruction datapath operations)
 - better than the previous one but impractical to implement
- Disadvantages:
 - What if we have floating-point operations?
 - How about component usage?

Multiple Cycle Alternative

- □ Break an instruction into smaller steps
- **Execute each step in one cycle**
- **Execution sequence:**
 - Balance the amount of work to be done, why?
 - Restrict each cycle to use only one major functional unit, why?
 - At the end of a cycle
 - > store values for use in later cycles, why?
 - > introduce additional "internal" registers

□ The advantages:

- Cycle time is much shorter
- Different instructions take different number of cycles to complete
- Allows a functional unit to be used more than once per instruction

X.S. Hu

Multiple-Cycle Implementation

5-5

X.S. Hu

Datapath

- Component sharing: ALU, Instruction/Data memory
 - > ALU used to compute address and to increment PC
 - > Memory used for instruction and data
- Additional elements: MUX's, Instr Register, Target Register
 - If a value needs to be alive during multiple cycles, it should stay unchanged during the whole time.

Control:

Needed for each datapath element during each clock cycle

What to be Done for Each Instruction?

How many cycles should the above take?
 You are the architect so you decide!
 Less cylces => more to be done in one cycle

X.S. Hu

5-7

5-6

Five Step Execution

1. Instruction Fetch (lfetch):

- Fetch instruction at address (\$PC)
- Store the instruction in register <u>IR</u>
- Increment PC
- 2. Instruction Decode and Register Read (Decode):
 - **Decode the instruction type and read register**
 - Store the register contents in registers <u>A</u> and <u>B</u>
 - Compute new PC address and store it in <u>ALUOut</u>
- 3. Execution, Memory Address Computation, or Branch Completion (Execute):
 - Compute memory address (for LW and SW), or
 - Perform R-type operation (for R-type instruction), or
 - Update PC (for Branch and Jump)
 - Store memory address or register operation result in <u>ALUOut</u>

Five Step Execution (cont'd)

4. Memory Access or R-type instruction completion (MemRead/RegWrite/MemWrite):

- Read memory at address ALUOut and store it in <u>MDR</u>
- Write ALUOut content into register file, or
- Write memory at address ALUOut with the value in <u>B</u>

5. Write-back step (WrBack):

Write the memory content read into register file

□ Number of cycles for an instruction:

- R-type: 4
- Iw: 5
- **sw: 4**
- Branch or Jump: 3

X.S. Hu

Some Simple Questions

妕

5-9

IIM

How many cycles will it take to execute this code?

lw \$t2, 0(\$t3)
lw \$t3, 4(\$t3)
beq \$t2, \$t3, Label #assume branch is not taken
add \$t5, \$t2, \$t3
sw \$t5, 8(\$t3)
Label: ...

5+5+3+4+4=21

- What is being done during the 8th cycle of execution? Compute memory address: 4+\$t3
- In what cycle does the actual addition of \$t2 and \$t3 takes place? 16

Step 1: Instruction Fetch

- □ Use PC to fetch instruction and put it in the Instruction Register.
- □ Increment the PC by 4 and put the result back in the PC.
- □ How about express this in RTL?

IR=Mem[PC], PC=PC+4

- □ What is the advantage of updating the PC now?
- Basic principle: do it ASAP!

X.S. Hu

5-11

X.S. Hu

5-10

Step 2: Decode and Register Read

Step 3 Execute (Instruction Dependent)

□ ALU is performing one of three functions, based on instruction type Memory Reference: ALUOut = A + sign ext(IR[15:0]); **R-type:** ALUOut = A op B;Branch: if (A=B) then (PC = ALUOut);

X.S. Hu

5-13

5-14

Step 5: Write-Back IN

□ Which type of instruction needs this?

RF[IR[20:16]]= MDR;

□ What about all the other instructions?

X.S. Hu

Loads and stores access memory

```
MDR = Mem[ALUOut];
  or
Mem[ALUOut] = B;
```

R-type instructions finish

RF[IR[15:11]] = ALUOut;

RTL Description: Put All Together (1)

Ifetch: -> Decode, IR = Mem[PC], PC = PC + 4; Decode: ->Execute, A = RF[IR[25:21]], B = RF[IR[20:16]], ALUOut = PC + Sign_Ext(IR[15:0]) << 2); Execute: if (opcode=lw) or (opcode=sw) then -> MRead/RegWrite, ALUOut = A + Sign_Ext(IR[15:0]); if (opcode="R-type") then -> MRead/RegWrite, ALUOut = A op B; if (opcode=branch) then -> Ifetch, if (A=B) then PC= ALUout; if (opcode=jump) then -> Ifetch, PC=PC[31:28]||IR[25:0]||00;

RTL Description: Put All Together (2)

MRead/RegWrite: if (opcode=lw) then -> WriteBack, MDR = Mem[ALUOut]; if (opcode=sw) then -> Ifetch, Mem[ALUOut] = MDR; RF[IR[15:11]] = ALUOut, ->Ifetch;

WriteBack: Mem[ALUOut] = MDR, ->Ifetch;

X.S. Hu

Execution Sequence Summary

- 11	NTT.
- 64	

5-17

斡

Action for R-type	Action for memory-reference	Action for	Action for
instructions	instructions	branches	jumps
IR = Mem[PC],			
	PC = PC + 4		
	A =RF [IR[25:21]],		
B = RF [IR[20:16]],			
ALUOut = PC + (sign-extend (IR[1:-0]) << 2)			
ALUOut = A op B	ALUOut = A + sign-extend	if (A =B) then	PC = PC [31:28]
	(IR[15:0])	PC = ALUOut	(IR[25:0]<<2)
RF [IR[15:11]] =	Load: MDR = Mem[ALUOut]		
ALUOut	or		
	Store: Mem[ALUOut]= B		
	Load: RF[IR[20:16]] = MDR		
	Action for R-type instructions ALUOut = A op B RF [IR[15:11]] = ALUOut	Action for R-type instructions Action for memory-reference instructions IR = Mem[PC], PC = PC + 4 A =RF [IR[25:21]], B = RF [IR[25:21]], ALUOut = PC + (sign-extend (interpretation of the second of	Action for R-type instructions Action for memory-reference instructions Action for branches IR = Mem[PC], PC = PC + 4 IR = Mem[PC], PC = PC + 4 PC = PC + 4 A =RF [IR[25:21]], B = RF [IR[20:16]], ALUOUt = PC + (sign-extend (IR[1:-0]) << 2)

A Multiple Cycle Datapath

Where do we need to insert mux's?Any other functional units?

X.S. Hu

X.S. Hu

IN

5-18

IN

Multiple Cycle Design

Break up the instructions into steps, each step takes a cycle

- balance the amount of work to be done
- restrict each cycle to use only one major functional unit

□ At the end of a cycle

- store values for use in later cycles (easiest thing to do)
- introduce additional "internal" registers

Control Signals

Exercise: Add a New Instruction

Let's try "jal"

政

IIM

RTL: PC = (PC+4)[3:0] || TargetAddr[25:0],

RF[31] = PC + 4;

X.S. Hu

5-22

IIN

Implementing the Control

- □ Value of control signals is dependent upon:
 - what instruction is being executed
 - which step is being performed
- □ How to represent all the information?
 - finite state diagram
 - microprogramming
- **Realization of a control unit is independent of the** representation used
 - Control outputs: random logic, ROM, PLA
 - Next-state function: same as above or an explicit sequencer

X.S. Hu

5-23

Finite State Diagram

